Human Activity Detection in Multi-Camera, Continuous, Long-Duration Video (HADCV'19) Workshop
AD Leaderboard
RANK | SUBMISSION_ID | EVALUATION_NAME | TRACK_NAME | TEAM_NAME | SYSTEM_NAME | METRIC_NAME | METRIC_VALUE |
---|---|---|---|---|---|---|---|
1 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00069_Team-Vision_20181009-155732-6403.sr-20181009-155732-6965 | ActEV-2018 | AD | Team_Vision | IBM_E2E | [email protected] | 0.70872 |
2 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00083_Team-Vision_20181009-134800-1188.sr-20181009-134800-1731 | ActEV-2018 | AD | Team_Vision | IBM_E2E_ALL | [email protected] | 0.71894 |
3 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00068_UCF_20181009-174811-7853.sr-20181009-174811-8151 | ActEV-2018 | AD | UCF | UCF | [email protected] | 0.73299 |
4 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00074_BUPT-MCPRL_20181021-065538-7015.sr-20181021-065538-7426 | ActEV-2018 | AD | BUPT-MCPRL | bupt_mcprl_ad | [email protected] | 0.74854 |
5 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00077_BUPT-MCPRL_20181024-053432-9108.sr-20181024-053432-9511 | ActEV-2018 | AD | BUPT-MCPRL | bupt_mcprl_aod2 | [email protected] | 0.75078 |
6 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00080_BUPT-MCPRL_20181024-053231-6042.sr-20181024-053231-6330 | ActEV-2018 | AD | BUPT-MCPRL | bupt_mcprl_ad3 | [email protected] | 0.75078 |
7 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00076_BUPT-MCPRL_20181008-045311-3858.sr-20181008-045311-4151 | ActEV-2018 | AD | BUPT-MCPRL | bupt_mcprl_ad2 | [email protected] | 0.75078 |
8 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00075_BUPT-MCPRL_20181008-030636-8198.sr-20181008-030636-8583 | ActEV-2018 | AD | BUPT-MCPRL | bupt_mcprl_aod | [email protected] | 0.75556 |
9 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00097_Team-Vision_20181007-203040-8901.sr-20181007-203040-9533 | ActEV-2018 | AD | Team_Vision | IBM_E2E_ALL_NEW | [email protected] | 0.75896 |
10 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00085_BUPT-MCPRL_20180928-002728-5146.sr-20180928-002728-5543 | ActEV-2018 | AD | BUPT-MCPRL | bupt_mcprl_aod4 | [email protected] | 0.75907 |
11 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00084_BUPT-MCPRL_20180928-002620-3845.sr-20180928-002620-4152 | ActEV-2018 | AD | BUPT-MCPRL | bupt_mcprl_ad4 | [email protected] | 0.75907 |
12 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00078_BUPT-MCPRL_20180921-234947-8187.sr-20180921-234947-8543 | ActEV-2018 | AD | BUPT-MCPRL | bupt_mcprl_aod3 | [email protected] | 0.75907 |
13 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00067_IBM-MIT-Purdue_20180823-154949-8470.sr-20180823-154949-8999 | ActEV-2018 | AD | IBM-MIT-Purdue | IBM | [email protected] | 0.83963 |
14 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00102_INF_20181009-100009-2955.sr-20181009-100009-3440 | ActEV-2018 | AD | INF | localresnettrnval_all | [email protected] | 0.84398 |
15 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00099_INF_20181009-095825-5765.sr-20181009-095825-6169 | ActEV-2018 | AD | INF | localresnettrnval | [email protected] | 0.87854 |
16 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00087_VANT_20181001-041813-0184.sr-20181001-041813-0488 | ActEV-2018 | AD | VANT | ACT | [email protected] | 0.88228 |
17 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00094_DIVA-TE-Baseline_20181005-161350-3844.sr-20181005-161350-4153 | ActEV-2018 | AD | DIVA TE Baseline | baselineACT_1_AD | [email protected] | 0.89457 |
18 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00103_DIVA-TE-Baseline_20181009-130747-6384.sr-20181009-130747-6737 | ActEV-2018 | AD | DIVA TE Baseline | baselineACTMerged_1_AOD | [email protected] | 0.90599 |
19 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00104_DIVA-TE-Baseline_20181009-130834-9585.sr-20181009-130835-0175 | ActEV-2018 | AD | DIVA TE Baseline | baselineACT_1_AOD | [email protected] | 0.90599 |
20 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00065_NIST-TEST_20181029-144922-2766.sr-20181029-144922-3544 | ActEV-2018 | AD | NIST-TEST | Test-System | [email protected] | 0.90599 |
21 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00091_DIVA-TE-Baseline_20181002-140233-6845.sr-20181002-140233-7141 | ActEV-2018 | AD | DIVA TE Baseline | baselineRC3D_1_AD | [email protected] | 0.90638 |
22 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00093_NII-Hitachi-UIT_20181115-024032-6192.sr-20181115-024032-6592 | ActEV-2018 | AD | NII_Hitachi_UIT | baseline | [email protected] | 0.91994 |
23 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00086_NII-Hitachi-UIT_20181115-025013-5968.sr-20181115-025013-6297 | ActEV-2018 | AD | NII_Hitachi_UIT | trail | [email protected] | 0.91994 |
24 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00081_NII-Hitachi-UIT_20181113-232655-7826.sr-20181113-232655-8173 | ActEV-2018 | AD | NII_Hitachi_UIT | init | [email protected] | 0.92137 |
25 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00071_UTS-CETC_20181005-073137-6294.sr-20181005-073137-6625 | ActEV-2018 | AD | UTS-CETC | window2 | [email protected] | 0.92491 |
26 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00088_USF-Bulls_20181008-095726-6807.sr-20181008-095726-7157 | ActEV-2018 | AD | USF Bulls | usf1 | [email protected] | 0.93445 |
27 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00095_USF-Bulls_20181008-005831-9550.sr-20181008-005831-9931 | ActEV-2018 | AD | USF Bulls | usf2 | [email protected] | 0.93445 |
28 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00098_USF-Bulls_20181009-164339-7900.sr-20181009-164339-8194 | ActEV-2018 | AD | USF Bulls | usf-3 | [email protected] | 0.93445 |
29 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00066_USF-Bulls_20181008-013009-7242.sr-20181008-013009-7545 | ActEV-2018 | AD | USF Bulls | usf0 | [email protected] | 0.93445 |
30 | ActEV-2018_AD_Phase-AD-ActEV-Leader_SYS-00072_UTS-CETC_20180907-024746-6012.sr-20180907-024746-6317 | ActEV-2018 | AD | UTS-CETC | base | [email protected] | 0.95103 |
AOD Leaderboard
RANK | SUBMISSION_ID | EVALUATION_NAME | TRACK_NAME | TEAM_NAME | SYSTEM_NAME | METRIC_NAME | METRIC_VALUE |
---|---|---|---|---|---|---|---|
1 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00070_Team-Vision_20181009-140238-5458.sr-20181009-140238-6040 | ActEV-2018 | AOD | Team_Vision | IBM_E2E | [email protected] | 0.75203 |
2 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00083_Team-Vision_20181009-134800-1188.sr-20181009-134800-1731 | ActEV-2018 | AOD | Team_Vision | IBM_E2E_ALL | [email protected] | 0.76292 |
3 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00097_Team-Vision_20181007-203040-8901.sr-20181007-203040-9533 | ActEV-2018 | AOD | Team_Vision | IBM_E2E_ALL_NEW | [email protected] | 0.77853 |
4 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00077_BUPT-MCPRL_20181024-053432-9108.sr-20181024-053432-9511 | ActEV-2018 | AOD | BUPT-MCPRL | bupt_mcprl_aod2 | [email protected] | 0.78592 |
5 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00075_BUPT-MCPRL_20181008-030636-8198.sr-20181008-030636-8583 | ActEV-2018 | AOD | BUPT-MCPRL | bupt_mcprl_aod | [email protected] | 0.84872 |
6 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00085_BUPT-MCPRL_20180928-002754-1535.sr-20180928-002754-1965 | ActEV-2018 | AOD | BUPT-MCPRL | bupt_mcprl_aod4 | [email protected] | 0.85223 |
7 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00079_BUPT-MCPRL_20180921-235304-7372.sr-20180921-235304-7867 | ActEV-2018 | AOD | BUPT-MCPRL | bupt_mcprl_aod3 | [email protected] | 0.85223 |
8 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00073_UCF_20180917-135516-1904.sr-20180917-135516-2312 | ActEV-2018 | AOD | UCF | UCF | [email protected] | 0.93422 |
9 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00093_NII-Hitachi-UIT_20181115-024032-6192.sr-20181115-024032-6592 | ActEV-2018 | AOD | NII_Hitachi_UIT | baseline | [email protected] | 0.93871 |
10 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00104_DIVA-TE-Baseline_20181009-130834-9585.sr-20181009-130835-0175 | ActEV-2018 | AOD | DIVA TE Baseline | baselineACT_1_AOD | [email protected] | 0.94081 |
11 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00065_NIST-TEST_20181029-144922-2766.sr-20181029-144922-3544 | ActEV-2018 | AOD | NIST-TEST | Test-System | [email protected] | 0.94081 |
12 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00081_NII-Hitachi-UIT_20181110-003804-3118.sr-20181110-003804-3450 | ActEV-2018 | AOD | NII_Hitachi_UIT | init | [email protected] | 0.94247 |
13 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00101_INF_20181009-154733-3763.sr-20181009-154733-4392 | ActEV-2018 | AOD | INF | localresnettrnval_all | [email protected] | 0.95099 |
14 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00103_DIVA-TE-Baseline_20181009-130747-6384.sr-20181009-130747-6737 | ActEV-2018 | AOD | DIVA TE Baseline | baselineACTMerged_1_AOD | [email protected] | 0.96485 |
15 | ActEV-2018_AOD_Phase-AOD-ActEV-Leader_SYS-00100_INF_20181009-154712-8611.sr-20181009-154712-9045 | ActEV-2018 | AOD | INF | localresnettrnval | [email protected] | 0.97125 |
HADCV workshop email: [email protected]
09:00: Welcome and Introductions
- 09:10: Invited Talk: Detecting Activities with Less, Cees Snoek (University of Amsterdam)
- 09:40: Invited Talk: Activity Detection in Extended Videos - The IARPA DIVA Program, Jeff Alstott (IARPA)
- 10:30: ActEV18: Human Activity Detection Evaluation for Extended Videos, Yooyoung Lee, Jon Fiscus, Afzal Godil, David Joy, Andrew Delgado, Jim Golden
- 10:55: Recent Results from a Proposal-based Approach for Action Detection in Untrimmed Videos, Carlos Castillo
- 11:20: Object-Centric Spatio-Temporal Activity Detection, Quanfu Fan
- 11:45: Novel Activities Detection Algorithm in Extended Videos, Li Yao, Ying Qian
- 12:10: Supporting Real-time Public Safety Analytics in the NIST PSCR Public Safety Analytics Portfolio, John Garofolo
- 12:35: A Continuous, Full-scope, Spatio-temporal Tracking Metric based on KL-divergence, Terry Adams
- 14:30: Invited Talk: View Invariant and Few Shot Action Recognition, Mubarak Shah (University of Central Florida)
- 15:10: Afternoon Break & Poster Session
- Joint Event Detection and Description in Continuous Video Streams, Huijuan Xu, Boyang Li, Vasili Ramanishka, Leonid Sigal, Kate Saenko
- A Scalable System Architecture for Activity Detection with Simple Heuristics, Rico Thomanek, Christian Roschke, Tony Rolletschke, Manuel Heinzig, Maximilian Eibl, Benny Platte, Robert Manthey, Matthias Vodel, Frank Zimmer, Marc Ritter
- Synthesizing Attributes with Unreal Engine for Fine-grained Activity Analysis, Tae Soo Kim, Mike Peven, Weichao Qiu, Alan Yuille, Gregory D. Hager
- Fine-grained Action Detection in Long Surveillance Videos, Sathyanarayanan Aakur, Daniel Sawyer, Sudeep Sarkar
- 16:15: Minding the Gaps in a Video Action Analysis Pipeline, Jia Chen, Jiang Liu, Junwei Liang, Ting-Yao Hu, Wei Ke, Wayner Barrios, Dong Huang, Alexander Hauptman
- 16:40: ActEV & ActEV-PC Group Discussion
Spatio-temporal detection of human activities in video is demanding in terms of labels and computation. In this talk, I will present recent work that attacks these problems. First, I will discuss supervision for activity detection from video-level class labels only. The state-of-the-art casts this weakly-supervised detection regime as a Multiple Instance Learning problem, where instances are a priori computed spatio-temporal proposals. Rather than disconnecting the spatio-temporal learning from the training, we propose Spatio-Temporal Instance Learning, which enables activity detection directly from box proposals in video frames. Then we will zoom in on representation learning for fully-supervised activity detection. The two-stream detection network based on RGB and flow provides state-of-the-art accuracy at the expense of a large model-size and heavy computation. We propose to embed RGB and optical-flow into a single two-in-one stream network with new layers. A motion condition layer extracts motion information from flow images, which is leveraged by the motion modulation layer to generate transformation parameters for modulating the low-level RGB features. The method is easily embedded in existing appearance- or two-stream action detection networks, and trained end-to-end. Experiments on several video datasets demonstrate the ability to detect human activities with less labels and computation, while maintaining competitive accuracy.
Coming Soon .
10:00: Morning Break
ActEV Challenge Results & Best Performer Presentations (1030-1210)
Video Analytics (1210-1300)
Activity Detection/Recognition Session (1430-1700)
17:00: Closing Remarks
Human Activity Detection in multi-camera, Continuous, long-duration Video (HADCV'19)
under the IEEE Winter Conf. on Applications of Computer Vision (WACV)
Waikoloa Village, Hawaii, January 7, 2019
As organizers of the workshop we are looking forward to your contributions.
A. Godil, J. Fiscus, T. Adams, A. Hoogs, R. Meth
Jonathan G. Fiscus, NIST
Terry Adams, IARPA
Anthony Hoogs, Kitware
Reuven Meth, SAIC
Mubarak Shah, University of Central Florida
Jeff Alstott, Program Manager, IARPA
Gregory Hager, JHU
Ajay Divakaran, SRI
Rama Chellappa, UMD
Yi Yao, SRI
Rogerio Feris, IBM
Carlos Castillo, UMD
Yogesh Singh Rawat, UCF
Haider Ali, JHU
Marc Ritter, HS-Mittweida
Michael Ryoo, Indiana University
Mubarak Shah, UCF
Sudeep Sarkar, USF
Fatih Porikli, Australian National University
Snehasis Mukherjee, IIIT
Bo Li, USM
Cees Snoek, University of Amsterdam
Konstantinos Avgerinaki, ITI-Certh
Asim Wagan, JU Jeff Byrne, STR
Yooyoung Lee, NIST
Roddy Collins, Kitware
George Awad, NIST
Asad Butt, NIST
Accepted papers will be allocated 8 pages in the proceeding and that is, a paper can be up to 8 pages + the references. The manuscripts should be submitted in PDF format and should follow the requirements of the IEEE WACV paper format. All work submitted to WACV workshop is considered confidential until the papers appear. Accepted papers will be included in the Proceedings of IEEE WACV 2019 & Workshops and will be sent for inclusion into the IEEE Xplore digital library.
For WACV'19 Paper preparation and Author kit, See WACV'19 Submissions page for more details Paper preparation and Author kit.
Workshop Registration
You can register for HADCV'19 workshop at the WACV'19 registration page or by clicking this link: WACV2019 Registration